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A PERTURBATION PROCEDURE FOR CALCULATING THE EFFECTS
OF TATERAL INHOMOGENEITIES ON THE EARTH'S FREE OSCILLATIONS

Notation

° this superscript identifies a quantity as appropriate to a spherically
symmetric carth model which is considered the unperturbed earth
model.

n this subscript represents the mode type, spheroidal or torsional,
and the r, 6, and ¢ mode numbers.

P density

A and 1 Lamé's comnstants

g gravity

Zn . n'th displacement eigenfunction

n change in the gravitational potential for the n'th eigenfunction.

9, the angular frequency squared for the n'th eigenfunction.

Y the gravitational constant

r, 6, ¢ conventional spherical coordinates
P, &, m the r, 6, and ¢ mode numbers respectively
| layer index; for example, the radial solution function for a
spherically symmetric earth model with mode

numbers £ and p in the jth layer is u

p,]

A Perturbation Procedure for Lateral Inhomogeneities

A perturbation technique is applied to the problem of the free
oscillations of the earth. The problem is formulated so that the
effect on the free oscillations of regional variations in physical

properties can be calculated. This result is related to surface wave




dispersion through the imblied great circular travel times. The
problem is of interest independent of the question of the existence
of weak zones in the earth since known differences in dispersion
over continental, oceanic, and tgctonic regions imply significant
lateral differences. Backus (1964) has given a procedure for
inyerting great circular and great semi-circular phase velocity data
for periods when a traveling wave view is appropriate. Toksdz and
Anderson (1966) have interpreted observed phase velocity differences
over different paths using path-averaging. Smith (1966) has presented
free oscillation data showing different observed pefiods at different
stations. The observed differences are probably due to regional
variations in earth structure. The theory givén here can aid in
more precise interpretation of observed differences in free oscillation
periods and in connecting free oscillation calculations with the
traveling wave viewpoint. Backus and Gilbert (1961) calculated the
rotational splitting of the free oscillations of the éarth using a
perturbation approach. The technique used here is essentially the
same although the emphasis is upon an operator formalism which is
convenient for lateral variations which occur over a distance which
is short compared to the wave length considered.

Two types of perturbations are treated:

a) perturbations imn A and u for a spherical, gravitating

earth model;

b) perturbations in A, u, and p for a spherical, non-gravitating

earth model.




The theory given allows calculation of the first order change in|
eigenfrequency, as would Rayleigh's principal, and also contains
expressions for changes in the eigenfunction and expressions for higher
order changes can be formed by simple extensions. The computational
effort to obtain more than the first order change in eigenfrequency
may be considerable.

For a complete treatment of the problem it is important to extend
the theory to include perturbations in density and shape, and the
effect of rotation. As mentioned, Backus and Gilbert (1961) have
treated rotation and some aspects of perturbations in density have
been considered by Backus (1967). The theory and results developed
here should be adequate to give good estimates of the effects of

lateral inhomogeneities on fundamental mode torsional eigenfrequencies.

The equations of motion for a spherically symmetric, gravitating

earth are

pov(§°.30) _.po'g*o (V'Tlo) - (\°+ zﬁ) V(V.GO) + u°vx(V x "’10)
Il n n n
(6-1a)

- [ .+° - [:] ° _>° .‘)0 - o ] = -] (<] +°
(VA%) (v un) (vu®) (Vun + unV) 0 an o % ug

and

~bnyVe (p° C;) + V'(Vw:l) = ( (6-1b)

Notatlons for equations used in Chapter 6 are given in Appendix 12

when not defined here. In equations (6-1 a, b) A°, u°, p° and g° are
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functions of r only. If X and u are functions of 6 and ¢
also, equations (6-1 a, b) become

og(le,? _ oTorg Ty 2 -+
p°v(g u“) p°g® (v u“) O+ 21V (v u“) + uv x (Vv x un)

; (6-2a)

'-¥ - R -+ -3 - ° - o-)'

(W) (Vru )=(Wu) = (Vu + u V) = oWy o.p°u

and
=4my¥e (p® W) + V(YY) = 0 (6~2b)

Equations (6-1) are given in Alterman et al, (1959) among others;
equations (6-2) are given in Hoskins (1920); both follow Love's
derivation (Love, 1911; Chapter 7).

Let the differences in A and yu which change equations (6-1)
to (6-2) be small so that oy and gn’ the eigenvalue and eigen-
function for the perturbed problem, are nearly equal to those of the

unperturbed problem. Define the perturbations by

AM(r, 8, ¢) = x(r, 6, ¢) - A°(x)

it

wl(z, 8, ¢) = u(r, 8, ¢) - u°(xr)

Then for notational convenience the following definitions are made
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and
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The matrix operator L, is applied to the column vector v; by

P

using ordinary rules of matrix multiplication so that equations (6-1la,

b) are written

n n n (6~1c) ,
and equations (6-2a,b) are written

(L° + Qv =0 p°u (6-2¢)

A procedure is now followed analogous to that given in Dicke and

Wittke (1960), (Chapter 14), or Mathews and Walker (1964), (Chapter

10). Equation (6-2c) is written

[+ — ] -
(L° + aQ) ZE =0 P EE (6-2d)

where o 1s an arbitrary parameter which jdentifies the order of

the terms in the assumed expansion

v o=v® 4 avi 4+ alv 4 eee (6-3a)
Jhoo_n Ln 0
u =u® + oul + o202 4 - (6-3b)
~n o _n _n n
= ° +(’.1+ 2452 4 v - s
o, =0 o a‘gr (6-3¢)

The column vectors v: and u; are defined by

Ao [
33 I

i
V\pn




and =
+q

u = u

n n

0

b e

Substituting equations (6-3a, b, c) into equation (6~2d) and equating

coefficients of the same power of o gives for the zeroSE power of o

= o p°u (6-4)
for the first power of o

©

1 1 = ° 4,1 1 ° -
vy * QY% =0 Yy toge vy €5
etc.

> +o
u is expanded in terms of the u

-+ -+

u; = z a u; (6-6)

m
where
= +°* *1
a (um . un) .

The inner product is defined by

+°* +1 = +°*.+1 o

(u* , ul) [JI u*eul o°d(vol)
and the Kg are normalized so that

Fok Foy .

s u) =1 .




Ottelet (1966) has shown that

+°* '+°
(up” > ug) =8 .

It is assumed that
1y = ° -
vy ) El a Vo (6-7) .

The constant a in equation (6-7) is the same as the comstant a
in equation (6-6) and there has been no use of an orthogonality
condition on the Vw; to obtain equation (6-7). Equation (6-2b)

is satiéfied by this assumption for all orders of a.

From equations (6-6) and (6-7) there follows

1 = © -
vi= Ya vo (6-8a)
I m Y .
and
1 = ° -
us é a_ u- (6-8b)

Substituting equations (6~8a, b) into equation (6-5) and using

equation (6-4)

© [ 1 -3 [} -
Z a p” u’ + o P u (6-9) .
m — — m — —

The fact that equation (6-2b) is satisfied for all orders of o results

in the second of equations (6-9) being satisfied. The first of

equations (6-9) is

~&



[} 670 Yo o o 1 o7a
+ o - e
Z g a pu Q11 u g X a pu + 0 pu (6-10)

Taking the vector inner product of equation (6-10) from the right

yields

>k -+
° . 0y o ~© 1
o, 8, t (ul, Qll“n) op 8, +o 8

L n fn
where :
(dyt Q113;> = fJJ af'(Qll KZ) p°d(vol).
If & = n,
cé\= (3:ﬁ qQ!! ;;) , - (6-11)

and if 2 # n

+ o -+
oy Qll u?)

2 c° - ¢
n £

a (6-12)

Equation (6-11) gives the first order perturbation in the eigen-
frequency of the nth mode and equation (6-12) gives the coefficients
for the first order change in the eigenfunctions. Further calculations
here will involve only equation (6-11), but a few comments are made
on the formalism developed above because of its possible use in other
studies.

General application of equation {(6-12) will involve considerable
calculative effort since the inner products of the spheroidal and

toroidal eigenfunctions over limited regions of a sphere are involved:

e




however, the results contain information about the amplitude of the
eigenfunction over a slightly inhomogeneous sphere which should be
useful in interpreting observed surface wave characteristics in
terms of earth structure. Following Morse and Feshback (1953),
(Chapter 9), the above procedure can be extended to include the
effects of perturbations in boundary shape. This allows treatment
of the effect of the varying elevation of the earth's surface. The
above development has assumed non-degenerate eigenfunctions which are
sufficient for the work which follows since the actual perturbations
calculated are ¢ independent which allows choice of an appropriate
zero order set of eigenfunctions by inspection. Treatment of more
realistic earth models will require extension of the ﬁrocedure to
account for the degeneracy of the eigenfunctions. This is straight-
forward using known procedures, for example, in any of the last
three references.

A gsimple modification of the above allows application of the
formalism to a non-gravitating sphére including perturbations in the
density p°. Dropping thg terms which contain g°, g, w;, Y in
equations (6-1) and (6-2) and replacing p° by p = p° + alp,

equation (6-2c) becomes

° + =0 (p® + ) .
(L aQ) ZE. on(p alp) u

oty

L® and v°® become
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- (A° + 2V (@e~) + u® Vx(V x ~) 0
L® = - (WA°) (Vo) = (W) (V. + V)
0 0
I p—
“*o
u
n
v® = .
L
L__P

The rest of the development is essentially as previously leading to

the following expressions in place of equations (6-11) and (6-12)
1 = ok oy _ o (Tok *o -
o, (un, Qll“n) o (un , Bp un) (6-11a)

and
»*O* +°
(um’ Q 1“n) g

0% “*a

u u

_ ( m® Ap n)

m o -
m

°
n
0o

(6-12a)
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Application of Perturbation

Procedure to Torsional Oscillations

The formalism is now applied to the torsional oscillations of a
layered, spherical earth model. Since an exact solution is developed
for the radial part of the eigenfunctions the Thomson-~Haskell matrix
technique can be applied in a manmer similar to that for the static
solution given in Chapter 2. The matrix relations for the period
equation for torsiomal oscillations of a sphere are given in Gilbert
and MacDonald (1960) and are not repeated here. However, the solution
function used here is different from that of Gilbert and MacDonald
and this solution function with the necessary matrix results is
given below and in the last section. A derivation of the solution and a
note on the sense in which it can be extended to spheroidal modes
are givén in the last section.

For the torsional modes of either a gravitating or non-gravi-

tating earth model equation (6-1d) becomes
o +0 - o ° +O —>O = (-] o _’O
ue vx( x un) (Tu®) (Vun + u 9) o) p° u’ .

The solution to this equation is of the form

_)0__ s
us = lep Yo (r) Eml (8,9)
As noted previously the subscript n 1is used for the mode type

and for the three subscripts m, %, and p. The émﬂ have been def ined

/3



in Chapter 2 and the constant Nmzp is defined below so that

JJJ weke ue p® r? sind d6 d¢ = 1
n n

over

sphere
RO
For the solution in each layer u° is a constant and p° = ;?

where R° 1is a constant. The radial solution function is

= 1
ukp(r) =ATr g 2 cosh ks + B r~2 2 sinh ks (6-13a)
if A +% > @ and
- - -5
uzp(r) = Ar ® 2cos KS+Br~* 2 sin KS _ (6-13b)

if (L +%) <@ .

A and B are arbitrary constants and the following definitions apply

7 = X, (6-14)
u
s =nr (6-15)
k = YL +%2 - W& (6-16a) and
K = Vo= (2 +%)2 (6-16b) .

For a layered earth model with ¢q layers numbered from 1 through g




! b L
° i=1 2 4y (2tm) ! _
21 Rj “kp,j dr D) (el 2(8+1) (6-17)

The detailed from of uzgp j dr and the necessary matrix
9

forms are given in the last section.

A perturbation in rigidity within the ith layer is considered

where
u; =uy - uz constant for rp €réx
BL € 0 < eu
0 < ¢ < 2w
and

u; il Pl u; = 0 elsewhere. Results are also given for a

perturbation in density of similar geometry but with the magnitude

of the perturbation determined by

- [«
1 - o . u_
Py r2

where Ri and R; are counstants.

[$



Tf x, = ri and ru =ri, o GL = 0 and eu = 7, this
perturbation is the same as a change ui in the rigidity of the

igh layer of the sphere (or similarly for a change in density) This
case was used as a check on the numerical calculations.

For torsional oscillations and these perturbations the pertur-

bation in the operator, Q, is written

Q=0 +q
where
e 1 —_
Qv = uy vx(v x ~) 0 for ST T .
~9yl 0n
2uiv(v ) 6, <8< 8
0 0 0 € ¢ 2
Qv = 0 elsewhere R
=(Vui) (V. + -9) 0
QS =
0 0 ‘
and
1 = 2 1 - - -
Vui Ty { §(x rL) 8 (r ru) }

pbo
- 1
P { a(eaeL} - S(OW(}U) }

+
@

/C



Equation (6-1la) is then

-+ * -+ >
01’11 = (u;*’ Q].IS u ) + (uo ) QIIV u ) Oo (Uo*, Ap u°)
u1
ok Foy i o T
(un' Qvun) u; %n Ev Ov ?
pl
Fok Poy _ 1 —_ —
(u ’qun) = R; BS OV + gv OS , and
(R - R,)
o ok Foy 1 i °o 5
0n (un’ Apun) Ri 0n Ev Ov
where
r
u
o 2
R1 f u 0p,i dr
r
R = L N
-y T
k j-1
z R® [ u? | dr
j=1 3 &p,s]
r,
]
2
6 m 2 m
u 9 pﬂ. -+ BPQ, . .
m*= ! —— sing do
5 sinéd 28
L
Ov =
2 {2+m) !

(20+1)  (R-m)t R(2+1)
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R? t . 2 M
E o= 1 ‘Q‘p’l Q,P,i r
-8 L
9
K Ty-1 ,
R® u dr
jzl h| J 2ps]
r
h|
m
ap Ou
L m 2 m _m
2 sinb _—86 SSL + m PR TIL 6
0 = L
S »
2 (24m) !
(20+1) (a=m)t F(A+D)
. _ MM Y
Q‘P:i T r ’
m m
oP P
mo_ cosb % 2 _% 2+ om
Sy = sine 88 T ™ SinZe 2 Py ’ and
m
o 1 °Fy _ cosb m
) sinb 39 sin2¢ )
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Results of Calculations

The preceding expressions were programmed for an earth model with
a perturbation in rigidity and a perturbation in density. The geometry

of the perturbed region is shown in Figure 6-~1. The calculated change

in eigenperiod, AT, is compared with

26 - 6.)
Mygp = g (T - 1) :

T1 - To is the change in eigenperiod for a change in rigidity extending
from 8 = 0 to 6 = m. ATAVE will be the change in eigenperiod if
Tl - To is reduced in proportion to the angular distance actually
covered by the inhomogeneity. Brune gg_él_(196l) and earlier Jeans
(1923) showed that the standing wave pattern of a free oscillation
can be viewed as resulting from the interference of two traveling
waves traveling in opposite directions around a sphere. For the
geometry used here the estimate ATAVE is appropriate for a source
located at the pecle with m = 0. 1In particular, for such a source,
physical arguments indicate that ATAVE should approach AT as the
wave length of the associated traveling wave becomes small compared
to 2(8u - eL) r where r is the radius of the sphere.

The particular perturbation used was a change in rigidity or
a change in density in a layer 10 km thick centered at 55 km depth.

The mantle model used for the results presented in Figure 6-2 was

one of Prof. D. L. Anderson's models based on data from shield areas.



The conclusions drawn are not dependent upon small differences in
the starting earth model. 1In Figure 6-2 for a perturbation from

6 = 15° to 8 = 90° the ratio of the breadth of the inhomogeneous
region to the wave length appropriate to the standing wave pattern
varies from about 1/2 at & = 2 to about 4 at ¢ = 20. At ¢ = 2

the estimate ATAVE is good to about 20% while at & = 20 it is good
to better than 5%. Similarly for a perturbation from 6 = 75° to

8 = 90° the same ratio varies from about 1/12 at & = 2 to about 9/10
at & = 20. For this case at % = 2 the estimate ATAVE may be in
error by a factor of 3 to 4, at ¢ = 10 it is good to about 20%,
while at & = 20 it is good to about 10%Z. Similar considerations

for the case where the perturbation varies from8 = 45° to 6 = 90°
give intermediate results. The geometry of the perturbations for
these cases is sufficiently simple that the relationship between the
free oscillation result and a traveling wave view is easily seen.
The change in free oscillation period can be directly interpreted

in terms of phase velocity for a great circular path by the formula

2% ¥
o

C = T

The interpretation for other geometries is more complicated, but the
above results should suffice for a test of the compatibility of the
hypothesis of a regional weak layer in the upper mantle and observed
surface wave dispersion.

To be specific the followlng discussion is limited to the case

of a thin weak layer at about 60 kwm depth. 1In Table 6-1 the torsional




free oscillation periods for three models are listed for several
values of the degree number £. A 1s the approximate wave length of
traveling waves which would interfere to give the free oscillation.
In the column "Model G'" are the periods for a 35 layer approximation
to a Gutenberg earth model. In the column "Model G3" are the periods
for a model which is the same except with the rigidity reduced by a
factor of 100 in a 1 km thick layer centered at 60.5 km depth. Column
b, the percentage differencés between the periods for Models G and G3,
shows that a regional weak layer with the properties of Model G3
is easily consistent with the long period data. Observed differences
for various great circular paths reported by Toksoz and Anderson
(1966) are larger than the differences between Models G and G3 even
without assuming that the weak layer of Model G3 is of limited extent.

In the column '"Model G4" of Table 6-1 are the periods for a
60 km shell with the same properties as the uppermost 60 km of the
Gutenberg Model G and with the lower boundary a free surface. Column
¢ is the percentage difference between the periods for Models G and
G4. The differences for the long periods are far larger than
observational differences and show the expected unacceptability of a
world encircling completely decoupling zone. As the period approaches
50 sec the differences in column ¢ rapildly approach the size of
observed differences. This results from the concentration of the
energy in the mode above the 60 km level.

The results in Figure 6-2 and Table 6-1 give a basis for

estimating the effect of a very thin, very weak regional layer on

X/



surface wave dispersion. However, although the rigidity changes for
models G3 and G4 are limited to a small region in the model, they

are not a small proportion of the original rigidities. To evaluate
the effect of this, the ratio of the actual period change to the
estimate of the period change from perturbation theory is listed for
several models in Table 6-2. The basic model is Model G. The column
"Model G1" is based on a model like G, but with the rigidity reduced
by one-half in a 1 km thick layer centered at 60.5 km depth. Similarly
Model G2 has a rigidity reduction to one-tenth of the original value
in the same layer. If the ratio given in Table 6-2 is near 1, the
perturbation theory gives a good estimate. This is the case for

the models with a rigidity reduction of 507 and 907 in a thin layer.
With a rigidity reduction of 997 the perturbation estimate is too low
by a factor of 3 at & = 100 (T ~ 88 sec). When the rigidity is
reduced to zero the perturbation estimate fails, as would be expected.
However, the periods calculated for the shell model, listed for

model G4, Table 6-1, can serve as estimates of the period which would
be deduced from dispersion in a region with a completely decoupled
outer layer which was many wave lengths long.

The above results are now combined to estimate the effect on
surface wave dispersion of a very thin, very weak zone of limited
lateral extent. Column's b and ¢, Table 6-1, give the veriod changes
due to an earth encircling weak layer. Reference to Anderson's
partial derivative tables (Anderson, 1964) shows that the percentage

differences for % = 160 are asbout as large as will occur for the model

Ad




considered here. The percentapge change 1is reduced by the approximate !
ratio of the length of path containing the weak layer to the total
length of path. Then it is increased by the approximate maximum
ratio of AT/ATAVE for the appropriate ratio of inhomogeneity dimension
to wave length. Table 6-~3 lists the calculated percentage changes in
period. These can also be interpreted as the percentage changes in
phase velocity. For long periods the observational differences for
different paths reported by Toksoz and Anderson (1966) are used as
a measure of an acceptable variation in period. For shorter periods
(about 40 to 80 sec) the variations in typical phase velocities for
different regions summarized by Brune (1968) are used. These measures
of acceptable variations in period are the maximum allowable since
they include known regional structural differences other than a weak
layer. The results for model G3, Table 6-3, are large but acceptable
by the above criteria. For model G4 with & = 20 results were included
for all cases for completeness, but they are obviously inappropriate
when the weak layer dimension and the path length are both 500 to 2000
km since dispersion for such a long wave length could not be measured
over so short a path. For a weak layer dimension of 1000 km and a
path length of 40,000 km a 0.83% change is predicted which, although
large, is not outside ébserved limits. For model G4 with & = 160
the changes again are comparable to observed limits.

The calculated changes in eigenperiod are sharply dependent upon

the lateral extent, thickness, depth, and rigidity of the weak laver.

A3




For a weak layer to have an appreciable effect on static tilts and
strains, its lateral extent must be at least as great as the source
to receiver distance, about 200 to 600 km for the observations
considered here. To a first approximation the effect of a weak layer
with non~-zero rigidity is proportional to its thickness. The static
models which showed deviations from the half-space tilts and strains
which were large enough to correspond to the observations are
essentially equivalent to complete decoupling such as characterized
Model G4. The percenftage variations for Model G4 are comparable

with observed variations without accounting for regional differences
other than a weak layer. ' Since other regional differences are
undoubtedly important contributors to the observed phase velocity
variations, their combination with a weak layer will tend to conflict
with phase velocity observations. Although the calculations are
uncertain at approximately the level of the discrepancy, the extreme
weakening necessary in the static models appears to make some
frequency dependence in the rigidity a necessity. Assuming that

a weak layer is due to partial melting, the material may show
appreciable rigidity at high frequencies and virtually no rigidity

at low frequencies. Some rigidity at £ = 160 (T = 57 sec) such as

in Model G3 results in period variations of 0.5% to 2% which are
judged acceptable. Longer wave lengths could measure a lower rigidity,
but still be consistent with observed differences because of the
longer paths necessary to measure them.

It is concluded that 1if decoupling is to be significantly

i



involved in explaining the static tilt and strain observations and
also be consistent with surface wave dispersion data, the decoupling
region must have the following properties:
a) the zone or zones of severe decoupling must be very thin,
of the order of 1 km or less; and
b) the effective rigidity of the decoupling zone must show

frequency dependence.




TORSIONAL SOLUTION USED AND SENSE IN WHICH IT

CAN BE EXTENDED TO THE SPHEROIDAL SOLUTION

The equations governing the radial part of the solution for

a spherically symmetric earth model are given in Alterman et al (1959).

For torsional motion the equations are

Y1 1
LI S
i T b y

. (22 + 2-2) 3

Yo = u 2 - 0p yl _ Y,
where the notation is as in Chapter 6 except the superscript ° has
been dropped for convenience; y, is for the displacement, y, is

for the stress, and the dot signifies differentiation with respect

to r. With the substitutions

vy =1’y

A\

it
~
N

and s = n 1

these equations can be written

26



[ T [ - s e
. 3 1
vy 2 " Vl
v (22 + 2-2) - R 3
vy ] o - 2 V2
Sy . Bose - - —

where v, and v_ are functions of s. If yu

) and R are assumed

constant, these equations become a first order set of simultaneous
linear ordinary differential equations with constant coefficients.
Such a set can be solved in closed form if the roots to the
characteristic equation can be found in closed form. The procedure
is well known, for example Hildebrand (1949), Chapter 1, and leads
to the result given in Chapter 6.

The results necessary to use this solution in the Thomson-

Haskell matrix formalism are in the notation of Chapter 3

27




2 cosh ks 2 sinh ks

e(s) =
u(2k sinh ks - 3 cosh ks) u(2k cosh ks = 3 sinh ks)
1 1(2k cosh ks = 3 sinh ks) -2 sinh ks
<) = gy ’
u(-2k sinh ks + 3 cosh ks) ' 2 cosh ks
3
a11=coshkd+ﬁ sinh k d R

]

1 :
ay, -‘Tl: sinh k d ’

ay; = pk (l--ZTé-) sinh k d s

and

azz—coshkd—-;—ksinhkd

where for the j-t--tl layer

gives the other solutlon form.
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For the normalization used in Chapter 6 the following results are

needed

b
J u2 pr2 dr = 2R

n
a
2k
A'Z 32k+ B'Z b—zk .‘.?. - l ..]:._.
a 4k
+ A' B ln(l;') ’
A' = A+ B ,
B'=A"'B 9

A and B are the coefficients of equation (6-13a) ,

B ———
o
[
=N
=
©
=
N
o
2]
[}
N

{(uz - 32) cos X ~ 208 sin x {S_Ji?‘l}

2 2 b
+ (o +B)9Ln(a) s

b
B\



T
x = K 2n i X ’
ab
y = K &n ('g') »
a = vi(s, y) ’
. 3a "2(51-1)
B = 2K K ,

the subscript j refers to the jEE layer and rj_1 < acgr, and

3

$bgr,.
-1 ¥ P STy

T
It is possible to obtain a similar solution for the equations
for spheroidal motion but density must be treated in a special
manner. In equations (6~la, b) let the density when it appears on
the left hand side of the equals sign be called pgravity and the

density when it appears on the right hand side of the equation be

called pinertial. Make the following assumptions

R
pinertial = 7z s
pgravity = % ’
E = g; s and

us A, 8y R, and R are constants,



then the substitutions

n=1 for i odd,

n = 3 for 1 even,

into equations (28) through (33) in Alterman et al (1959) result in an
equidimensional set of equations in the variables v, This set can
be reduced to a set of six simultaneous linear ordinary differential
equations with constant coefficients by the charge of variable

s = n r. It can be shown that the resulting equations have a closed
form solution. The use of two different variations for density is,

of course, only a mathematical artifice. This spheroidal solution

was not completed since it does not appear to offer any advantages
over existing numerical techniques. The existence of this solution
was noted here since the author is not aware of it having been

recorded previously.
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Ratio of Perturbation Estimate of Period Change

to Actual Period Change

Model Gl

1.0

1.0

1.0

1'0

100

1.0

Table 6~2

Model G2

1.0

1.0

l’l

1.1

l.l

Model G3
l.i
1.4
1.8
2.0
2.2

3.0

Model G&

6200

3600

1400

290

66
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Figure 6-1
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Figure 6-2
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